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ABSTRACT

In an economy with finitely many agents, one renewable resource and an
infinite horizon, it is shown that there is exactly one maximal
allocation corresponding to given limiting shares of consumption and
this allocation converges monotonically. Therefore, if there is no
discounting, at most one fair maximal program exists - that which gives
an equal amount to each individual in the limit. In this allocationm,
envy is always finite. However, only in special cases is it envy-free.
This is in contrast to the case of finite economies where envy-free
and Pareto efficient allocations may not exist, or if they exist may
not be unique. :

A

ke
‘Mwsm..u%.‘f v




INTRODUCTION .

I.
II.
III.

Iv'

TABLE OF CONTENTS

DEFINITIONS AND NOTATION .

UNIQUENESS OF MAXIMAL PROGRAMS

EXISTENCE OF MAXIMAL PROGRAMS

FAIR ALLOCATIONS .

REFERENCES .

APPENDIX . . .

.

PAGE

13
16

20

L T

¢ aiiat

1 m——

- | § Ay ¢ 9l



INTRODUCTION

Mirman and Levhari [3] consider an infinite horizon economy with a
single renewable resource. In [3], two countries fish in a common
ocean. The fish population reproduces in accordance with the usual
neoclassical production function. Each country has a utility function,
and there is a discount rate common to both. It is shown that the
Cournot-Nash non-cooperative duopoly equilibrium is in general not
Pareto optimal.

In this paper, the cooperative solution for the same model with a
finite number of agents is considered. We seek consumption programs
which are maximal and satisfy some fairness criterion. The main result
is that any maximal program is globally asymptotically stable in that
the value of capital stock (fish population) monotonically approaches
the "golden-rule" value x (that is, f'(x) = 1/8 where f 1is the
production function and B the discount rate) and the consumption of

h

the it agent monotonically approaches some fixed value 6 < , where

i

n

1 20, Z 9i =1 (here ¢ = £(x) - x is the "golden rule" con-
i=1

sumption, and n 1is the number of agents). Conversely there is exactly

]

one maximal program corresponding to any distribution of limiting con-
sumption. Fairness then consists in a reasonable choice of limiting
consumptions. If the agents are thought of as individuals, equal
limiting consumptions would seem appropriate. If they represent
countries, the limiting shares could be chosen proportional to popula-
tion. In this way, each individual could receive an equal limiting
share of consumption. The allocations characterized by these defini-
tions of fairness are not in general envy-free. However, in the un-

discounted case (B = 1) it is shown that our definition of fairness

T N p———— e —
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is the only one which guarantees that envy will be finite, that is, the
utility an agent could receive from someone else's consumption stream
can exceed the utility he actually receives by at most a finite amount.

The lack of an envy-free maximal allocation in the undiscounted
case should not be objectionable. In fact, according to Rawls, "a
rational individual does not suffer from envy. He is not ready to
accept a loss for himself if only others have less as well ... . Or at
least this is true as long as the differences between himself and others
do not exceed certain limits." ([6], Page 143.) Thus, we feel justified
in asserting that the maximal allocation giving equal limiting consump-
tions to each individual is the only conceivable fair allocation in the
case B =1.

The existence of a unique fair efficient allocation in our model is
in contrast to the case of finite economies. For example, any equilib-
rium for a pure exchange economy in which every agent is assigned an
equal share of the initial resources is Pareto optimal and envy-free.
(The resulting allocation is called income-fair in Pazner [4].) There
is, however, no guarantee that there is a unique allocation having these
properties. Moreover, in economies with production fair and efficient

allocations need not exist. (An example is given in Pazner and

Schmeidler [5].)
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I. DEFINITIONS AND NOTATION

There are n agents. Each agent 1 has a utility function for

consumption, u, (0,=) > R . uy is assumed to be strictly increasing,

strictly concave and twice continuously differentiable. Denote

lim ui(c) and 1lim ui(c) by ui(O) and u]'..(O) respectively. These
c+0 c>0

values need not be finite. A discount factor B8 € (0,1] is common to all

consumers.

The technology is described by a twice continuously differentiable

function £ : [0,») + [0,%) with £f(0) = 0 . We shall assume, for all x ,

that £f'(x) > 0 and f£f"(x)< 0 . We shall also assume that £'(x) > 1/8
for some x > 0 , and that f(x) = x for some x > 0 . It then follows

that there is a unique x € (0,X) satisfying f£'(X)

1/B . Let

"

¢ = f(x) - x . Notice ¢ > 8f(x) - x whenever x #

. = = 1
A program is a sequence {<xt’Yt)}:- with X, 20, Ye (ct, Wisinrg G

1

i o

€20 forall 4 and ¢t . Let ¢ = ] ¢, .
i=1

e . A program {(xt;yt)}

will be called feasible if, for some x. > 0 , c, = f(xt-l) - x_ for

0 t

t 21 . We shall assume throughout that all programs start from a fixed

0>0.

i)=

=il
A sequence {ct}c-l is said to catch up to {c:}t-l for agent i

T
if 1lim inf | Bt-l[u (Ei) - u, (ci)] 20 . Aprogram {(x_;y )} is
oo toi i\"e t ks
maximal if it is feasible, and for no other program {(xt;Yt)} does
i -
{ct} catch up to {c:} for each i . Notice that this definition
coincides with the usual definition of Pareto optimality when 8 < 1 .

A feasible program {(x:;Yt)} will be called envy-free if, for every i

T
and j , there exists _TO > 0 such that :21 Br"l[ui (ct) =y (ci)] > 0

whenever T > I'o .

o
t

),
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II. UNIQUENESS OF MAXIMAL PROGRAMS

The purpose of this section is to show that for every distribution
of limiting consumption there is at most one maximal program. To do
this we shall restrict attention to programs satisfying a condition
necessary for maximality. First, properties of feasible programs are
deduced.

Let x = min(xo,:-c) . For cC(O,f(xm) - xm) define the function
8. by 8_(y) = £(y) - c . Since gc(:-:) = £(X) - ¢ > £(x) - (£(X) - %)
and gc(i) = f(X) - ¢c <X, there is a y €(x,x] satisfying gc(§) =y .
Furthermore, gc(y) -y >0 for y€[xm,;') and gc(y) =yt or

D AELaRD S

The sequence defined by y, = g (y,_;) » ¥, =

X converges
0o~ *o g

monotonically to ¥y .

Proof:

If y €lx,,y) then y =g (y) >g.(y) =y 3 >V, 2% -

Therefore, since Yo = %y > ¥ > Yo implies Ye increases to some

?C(xm,f'] . Furthermore, y = gc(§) g0 y=y ., 1t Y, >y a

similar argument shows that y,  decreases to vy -

Lemma 2.2:

Let x, = max(x;,x) . For any feasible program {(x v},

i

xt,ct;xM for all 14, and all t 31 .

T —————e et 2 e e e e R —— T —— Y T




Proof:

Let s f(yt—l) » Yo = % By Lemma 2.1, y, converges
monotonically to x , and hence Ve & %y for t >0 . Also, for any

feasible program x _ < b 8 for t >0 . This follows by induction since

t- =

X, = Yo and if Xg _<.ys for some s , then X4 ™ f(xs) = Copl

£ t‘(xs) st - Yg41 * Therefore, X, £y, &%, for t>0. Since
i

€. 2 f(xt-l) by feasibility, A5 e f(xt-l) < f(xM) <X, and the

lemma is established.

Lemma 2.3:

Let {(xt”t)} be a feasible program and let cC(O,f(xm) - xm) "
Suppose x, £ x for all t 21 . Then there exists an s such that

c
S

c .

v

Proof:

Let Vo= %Xp » V. * gc(yt-l)' Pick T so that Yp > X . This

is possible by Lemma 2.1. Suppose . S¢ for t > 1 . Since

%x. = £(

¢ (g f(xt-l) - ¢ it follows, by induction, that

o L "

x for t >0 . In particular, Xp 2 Yy > X , contradicting

>
t"‘yt =

x.l.;;:' for t21. Hence c >c for some s .l

— - i e e T —— ———— e e




The following necessary condition for maximality makes it possible

to restrict attention to programs ﬁxt;yt)} for which 1lim (xt;Yt)
£
exists.

Lemma 2.4

Let Kxc;Yt)} be a maximal program. Then, for every i and s ,

(1) If ¢

0

> 0 then ul( i )/u ( s+1)‘; Bf'(xs) -
i (e

(2) If < ) 1el,) s8E'x).

s+l >0 then u!

% i

*
= L}
In particular, if Co s Copp > 0 then ui ( )/u (s+1) BE (xs)-

Proof:

For fixed i and s define the function hi by

h (&) = es’l[ui (et - §)+ 8 uy (el + e, +6) - f(xs))] :

hi(é) is the utility agent 1 receives from consumption of c: -8

1
in period s and Cotl
i

56:(0,::) . But then the program identical with {(xt;yt)}

except that agent i consumes c: - 6 in period s and

ci
s+l

*Lemma 2.4 makes it clear why a common discount rate is required.

Suppose that agent 1 had a discount rate Bi gor & wil o2 IL

’ >0 for t>T, 1=1,2, then Lemma 2.4 implies
(c )/u §)(B /8 ) ( )/u ( T+N) for all N > 0 . Hence

lim ct = O and so no program satisfying conditions (1) and (2) of
£

Lemma 2.4 can give positive consumption to both agents in the limit.

+ f(xs + §) - f(xs) in period s + 1 would dominate {(xt;st)}.

+ f(xs + §) - f(xs) in period s + 1 . Suppose

¢_ >0, then we claim hi(O).g 0 . Otherwise hi(G) > hi(O) for some



This contradicts the maximality of {(xt;yt)} , SO we may conclude
i

i &) e
that P 0 implies ni(O) <0 . Similarly, if Cot

1 > 0 then

i) - BE'(x)

' ' st s-1 (]
hi(O) 2 0 . The lemma follows since hi(O) 8 [ui (cs

”y (°:+1)] g

The feasible program {(xt;yt)} will be called admissible if it

satisfies conditions (1) and (2) above, for every i and t .JR

Proposition 2.5:

Let {(xt”t)} : be an admissible program. Then HQ (xt;yt)
exists and is equal to (x3;0) or (x;y) where y = (El, ey En)

n
and Z tac .

i=1

To prove this proposition it is necessary to prove the following.

Lemma 2.6:

Suppose {(x:;Yt)} is an admissible program.

(1) If for some s , x _, 22X, » X2 X then x 2x .,
for t 28 .
(2) 1If for some s , Xg_.] SXg » X X, them X <X .

for t> 8.
Thus, every admissible program is eventually monotone.

Proof:

It follows from Lemma 2.4 and the concavity of u, that x > Xg

i
implies ¢ >c_ for each i . Therefore, c¢ = ci >

s+l = s s+l i=1 s+l i

"
—
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8
1
cg cs , and so if X 1 ;xs then X1 f(xs) - n 5 f(xs_l) -
SLm R Hence, if i x, and x 2 x, for some s , then
X 2R, 2Ry Repeated applications of those reasoning establish (1).

A symmetric argument yields (2). It follows that there exists an s

such that either x ;:.c for all ¢t

¢ sior X < x for all t >3 .

>
- t

Thus {Yt:} is monotone for t > s N |

Proof of Proposition 2.5:

By Lemma 2.6, {(xt;vt)} is eventually monotone, therefore, by
Lemma 2.2, lim (xt”t) exists.
L+

Let lim (Et;?rt) = (X;¥) . Suppose % > X . Then we claim ¥ = O .

tom

Otherwise 1lim ci’ = ci >0 forsome i . Pick T so that Bf'(xt)

Lo

£1-6 for t 2T and some § > 0 . Then c.i.g_c;‘mz_éi for N2 0
v 1 ' (o1 - U U
and, by Lemma 2.4, ui(c,r)/ui(c,rm) [8f (x,r)] svei TRE (xT_l_N_l)]

£ (1 - &)Y . Thus lim ug (c,i.‘)/ui (c;_m) = 0 . But this contradicts
N

ui(c;)/ui (c;‘m) & ui(xM)/ui(Ei) >0 . Hence y = 0 whenever % > x .

Therefore, 0 = limc, = lim [f(x__,) - x ] = f(X) - % and so % = X .

to tom

To complete the proof it suffices to show % < x is impossible.
In order to get a contradiction, assume % < x . Let q be chosen
so that Bf'(x ) 21 -6 forall t2q and some § >0 . If
X S x for t >0 then {r,} 1is non-decreasing and, by Lemma 2.3,

there exists ¢ > 0 and a r such that S 2Ny and so c¢c_ 2> ¢

t
for t2r . On the other hand, if x_> X for some t , then there
exists s such that Xeop > X 2x, and x> X, for €t 298 .

This is a consequence of Lemma 2.6. In this case, for t > s ,

Ce 2y flx, ) -x 2 f(X) ~x=c. Now, let T = max (q,r,s)




and € = min (E,c)/n . Then, for some j , ci > € whenever t > T .

i - 1l '
Hence x, 2 c. for all i and t dimplies that > uj(°)/uj(xM)

N TS i (e ' L P
2 o) ()79 (°T+N> [8£' (xp)] ... [BE'(xpy )] 2 (1 + &Y for all

N >0 . This is impossible, so &% < X 1is ruled out. The observation
that if 1lim x, = X then lim ct = f(§) -x=c completes the proof.ll

£+ t->o

Proposition 2.7:

Suppose {(xt;yt)} is maximal. Then 1lim x, = X .

>

Proof:

Suppose the proposition is false. Let {(xt;vt)} be a maximal

program such that lim x_ # X . By Proposition 2.5 lim X - X . Choose
Lo tom

T so that X, s %, lx= xt| <c/4, and |x - f(xt)l < ¢/4 whenever

2T . It follows that c = f(x, _,) - x g |£(x:_1) - x| + |x - x:| < e/l .

Consider the program ((it;7t)} where

(x,3%,) = (x,3Y,) 1f et «<T
x, =X if t2T and
E(xp_y) =x 1f e =T

c £ £» %

~ i ; n
Since ¢ _>c,  for t > T we can choose Y. ® (Ft, Sl ét) such that

n
) cdme, and et tee every 1 . Therefore {(X ;¥ )} dominates
gay ¥ t t t t" ‘e

{(xt;Yt)} » contradicting maximnlity.ll

_—
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Proposition 2.8:

Suppose {(xt;yt)} is an admissible program such that 1lim x, = % .

t>x=

Then {(xc;Yt)} is a monotone sequence, increasing if X, < X , constant

1f X = x , and decréasing if xo > X .

Proof:

The proposition follows immediately from Lemma 2.6 and Proposition
2.7.8
Theorem 2.9:

n
Given 6 = (91, s en) such that 6, > 0 for each 1 , I ei =1

i

i=]1
and X > 0 , there is at most one maximal program {(xt;vt)} starting
from xo such that 1lim y_ = c6 .
t L
Proof:

Fix 8 and let Mij(e) = Mij = u;(eic)/u

Clearly O < Mij < o and M:Lijk = Hik'.

Before we can prove the theorem, two preliminary results are needed.

3(955) P 1 ¢2 ,358 .

Lemma 2.10:

Let {(xt;vt)} be an admissible program with lim (xt;yt) = (x;c8) .
tm
Then
' v () (S
pEm ) By é‘c)/“j (°:+1)
(*)
for all j and t , with equality whenever ci >0
and

uy (c:)/uj' (cjt) %M, wvhenever c: =8 (o)
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Proof:
Unless 0 = ci = c‘1+l » (*) follows from Proposition 2.8 and
Lemma 2.4. If 0 = c'?: = c‘1+l then x < x and so Bf'(xt) 2 1=

u:'i(O)/u:g(O) . Therefore, if ci > , U (ci)/ui(ctﬁ‘)

0
[Bf'(xt)] vas UBET (xt_w 1)] ;u.'(ci)/ug (C‘L_ ) for all N > 1 . Hence,

3 N
provided ct >0, uj (ci)/u' (c{) 2 lim uj (ct_m)/uj (j ) = Mij N

Next we deduce a technical result concerning solutions to (*%),.

Lemma 2.11:

Suppose (ci, % ¢”) and (ci, g & satisfy (**) . 1If

ooy

c for some j , then ci > Ei whenever éi >0 .

Proof:

Suppose od >ad and &%5>0. we have ui (cj)/ul'c(ck) > M

(c ) 2 M'kj hence u (cj)/uk(c J e

jk

and u (t.'. )/u'! (dj)/u (é ) and so

3 i
1> uj(cj)/u:j(éj ERMC )/uk(t’.l ) and thus c* > ¢* .M

To prove the theorem suppose {(x:;Yt)} and {(Rt;?t)} are two

different programs such that lim (x.;Yv.) = lim (%.;7.) = (x;8¢)

T Lo

Then we can find s > 1 such that (xc;Yt) = (ittﬁt) for t <s , and

a
Yo+l # 7g4y - Without loss of generality, assume izl 121 at

Then we claim that for all t > s , x, < 2c and c: > ét whenever

n n
i i i :
c, >0 . Since ZC > J e y X wflx)~ § ¢ < f(x ) - :
t {=1 s+l {=1 s+l s+l s =1 s+l s :
n i

i
121 ts+1 = x.+l . But, by Lemma 2.10, Yol and 7s+l satisfy (*%) .

i i L i

It follows from Lemma 2.11 that c“_l > es+l whenever ¢s+1 >0

R e

SS———)
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This establishes the claim when t = s + 1 . Now suppose the claim
is true for some T > s . By (*) and the assumption that X < i,r , we

Hass “i( )/“ (1:+1) = BE'(xp) > BE'(Ry) 2 u) @%‘ fuy (e;+l) popeiing

c_. >0 . Hence, since cé 3_6% . c; > 0 implies Ei 3

i
T T+1 ~ ST+l °

] k| ]
Moreover, by Proposition 2.8, e > 0 for some j , so el > e'l‘+l

and therefore, since ¥ and ¥ both must satisfy (**) it follows
T+1

T+1
from Lemma 2.11 that ci > Ei whenever éi >0 Hence
5 T+1 T+1 T+1 7 :

n n o n

i i i i
) > and - fled = ] er, cEOR) - | B~
B Sr41 & Sr41 Xr+1 p a H xr o B
xr +1 - The claim then follows by induction.

Now select T so that for t > T, et >0 . This is possible
since 1lim ct = 615 >0 . From the claim, c: > Ct for €27.

)
Therefore, ul( )/u (’1’+N) = ui (c%)/ui_(é;)lﬁf'(i!.r)/Bf'(xT)]

[Bf'(x,r+N_l)/(Bf'(xr+N_l)] for N>1 . But xt<i: for t 2T so

1>u()/u(); 1( )/u(Tm)forau N>1. Thus

] P & (] aYy &
1> r1{_1:: “1(T+N)/“ (T+N) ul(elc)/ul(elc) 1 . This is impossible,

and the contradiction establishes the theorem.W
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III. EXISTENCE OF MAXIMAL PROGRAMS

The purpose of this section is to prove that maximal programs

exist.
Theorem 3.1:
n
Let @ = (8, ..., 8 ) with 8 >0, 121 6, = 1 be given. Then
there exists a maximal program {(it;;t)} such that 1lim ;t =08 c .

£

It turns out that this theorem is an easy consequence of the

existence of maximal programs in economies with a single utility

n
maximizing agent. Define the function U by U(c) = max u, (e,)/
i=]1

n
20, ) ¢; = ¢ . Clearly, U fis continuous
i=1

and strictly concave. Also, since each 'u

i
ui(aic) subject to ¢y

1 is strictly concave, every

¢ 2 0 determines a unique vector vy(c) = (cl, covy cn) such that

o n
- = ' o
¢, 20, 121 ¢, =c and U(e) igl ui(ci)/ui(eic) . We shall call

{(xt,ct)} a feasible sequence (from xo) if % 20,¢

¢ 20 and

t

g, = f(xt-l) -x for all t 21 . Thus, associated with every feasible

t

sequence {(xt;ct)} is a feasible program {(xt;Yc)} where e Y(ct)

Theorem 3.1 is a consequence of the following result.

Proposition 3.2:

Given any x, > O there is a unique feasible sequence ((Et;Ec)}

T
such that for any other feasible sequence 1lim inf Z g* 1[U(c:) -
Teo t=l

U(Ec)] <9
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Proposition 3.2 is well known in the theory of optimal growth.
Proofs can be found (for the case B8 = 1) , in more general settings, in
Brock [1] or Gale [2]. Since only a weak version of their theorem is
needed, an independent proof of Proposition 3.2 is given in the

appendix.

To prove Theorem 3.1, let ;t = Y(Et) for t 21 . Then Proposition

3.2 implies that {(xtﬁt)} is maximal. For suppose {(xt;Yt)} is a
T oe-f /4 -1
feasible program such that lim inf Z g8 [ui (c:) - ui(ct)] 20 for
Too t=]
each i . Then

t e -
lim inf | B (U(e) - U] =

T+ t=]
T B t-1
8 i% e
ue e 1L s ko) - 2

Lol
lim inf b s El
1=1 Tow ¢=1 Y3 84S)

- -

But, by Proposition 3.2, this can only happen if {(xt;*(t)} = {(it;;c)}

is maximal.

It remains to show that limy_ =6 ¢ . Because {(x ;v )} is
. t S

maximal, it follows from Proposition 2.5 that 1lim Ye exists. Denote
Lo

this limit by (Ei, oy En) . But, by Propositions 2.5 and 2.7,

n n Ui(CI)
Ei = ¢ and so (Ei’ +eey C_) solve: Maximize [ (6.2 subject
{=1 : 1=1 Y17y
n
&8 " (~ ' ~ Vil ' ~
to 121 ¢y =¢,c 20 . Therefore, ui(ci)/\:i(eic) ;uj(cj)/uj(ejc)
= - ui(ci) ” .
- > ) whenever
whenever ¢ .’ 0 . Thus 121 ¢ ¢ and W =43
Ei > 0 and we must have Ei - eiE by Lemma 2.11. It follows that
T ———— T —

A1 bl e N e
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lim Y, * 8 ¢ , completing the proof.ll 3

tr» 4
Combined with Theorem 2.9, Theorem 3.1 guarantees the existence of a
unique maximal program associated with every distribution of limiting con-

sumptions.

PR—— — — |




16

IV. FAIR ALLOCATIONS

The results of Sections II and III show that there is a unique

maximal program corresponding to every limiting distribution of consumption.

This section discusses the properties of maximal programs, with emphasis on
that which gives equal shares to each agent in the limit. Throughout this
part we assume £ = 1 .

We begin with a characterization valid for all maximal programs.

Proposition 4.1:

Let {(xt”t)} be a feasible program starting from Xy - Then, for
T -
all T>0, ]} (e, -0 < £(xy) .
t=1

Proof:

Since c_ = f(xt-l) -x, and f(x) - x <c forall x20 we

t
T % T 4
have [ (¢, =¢) = ) [(f(xt) -x) -cl]+f(x)) - f(x,r) < f(xo) § |
t=1 t=1

Lemma 4.2:

-]
For every maximal program {(it;*-{:)} yiik I:-ct - x| converges.
t=1

Proof:

If x, < X Lemma 2.7 guarantees that x, € [xo,;] for t21.

Hence, by Lemma 2.3, there is a T such that E.r > 0 and so there

exists ¢ > 0 and j such that Ejt >c for t 2T . It follows from

Lemma 2.4 that u'(c)/us(xu) ;u'(zj)/u'(zj )- f'(ic) ase £'%

i 30/ Cean Xean-1)

for all N 2 0 . Therefore, uj' (c)/u5 (%) 2 “c;'rf' (;::) and so

m._.f' (x) <= . It is well known that this implies | [£'(X ) - 1]

t=1 t ol t

< ® , hence, since f'(x) = 1 we have = > | (£'(x) - £'(0)] =
t=1

R — L —
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tZl (;t - ;)f"(st) for some Ete:[it,§] . Therefore, if m = mini€1x0,§]
-£'EN >0 ,=> ] G -0f"@E)2zm ] (x-x) . Asinilar
t=1 t=1

argument establishes the lemma when x, > x .1

Theorem 4.3:

©

For any maximal program {(x ;Y )} , ) |c -¢
£ % iy

A
8

E

Proof:

If X = X then by Proposition 2.8 Et >c for t 21 and the

result follows from Proposition 4.1.

If x. < x , then ¢c>c¢c for t>1 and

0 t
c-E =@ ~® - G, ) =)
- (E®) - £Gx,_ N+ X -F ) -GE@-x )
S (x-x _E(xg) +(x, - x ) - &~ x. ;)
A@E-%_JEE) VL& -2 )
Hence .2' (c-2) g (F'(xp - D E (x -x )+ qf @, - §t_1)

t=_ t=1 t=1

3 @
This completes the proof since z (x - §t-l) < ® by Lemma 4.2 and
t=1

tzl (x, - x._;) = x-x, .0

Together with Proposition 4.1, Theorem 4.3 says that no program can
yield infinitely more consumption than a maximal program. Corollary 4.4

makes an analogous statement about utilities.

Corollary 4.4:

Suppose {(Z:;7t)} is a maximal program. If lig Y =c8 for

some 9 = (8 soop en) , 8, >0 for each 1 and Z ei = 1 , then

i

:Zl lu (8,3 - ui(Ei)] <w

l!
-1 -
czllct - 61 ¢l <= and
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Proof:

By Proposition 2.8, IE - EI for all i and t 2> 1.

S -i - -1 -
So czl c. eicl < by Theorem 4.2. Also Iui(ct) - ui(eic)l =

ui(it)[lat - 915|] ;Mi[lst - ¢|] where Mi = max [ui(zi) - ui(eis)] .

The corollary now follows from another application of Theorem 4.2.

Corollary 4.5:

@ @
if 0, . 1/n for each 1 then |} IE: - Eil <® and )

t=1 t=1
|ui<zi') - uié:i)l <o for every i and j .
Proof:
1 -5 -1 e =i
Since Ict - ctl :"ct - c/n| + lci - ¢/n| , that Z lct -

t=1
'c'-ll < ®» follows from Theorem 4.3. Also,' if Mi = max[ui(ai), ui

(E/n)] then |} |ui(31') - ui(Ei)l M :Zl lEt - E'll < ® by the mean

t=1

value theorem.
Corollary 4.5 guarantees that the maximal program giving each agent
limiting consumption c¢/n 1is almost eanvy-free, in that each individual
receives - up to a finite amount -~ as much utility from his consumption
sequence as from that of anyone else. Clearly no other maximal allocation
will have this property, with any other limiting consumptions there would
bea T and an € > 0 such that E: >c/a+e>c/n-¢> Ei for some
i and j and all t > T . Agent j would then prefer i's consumption
to his own by an infinite amount.
Unless the agents have identical utility functions, no maximal
allocation is envy-free. In fact, the following theorem implies that
in many circumstances there exists i and j such that Et > Ei for

all t.,

- - - R e "
-

o ——
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Theorem 4.6:

Suppose {(xtﬁt)} is a maximal program and 1lim :;t w SlLin, ..o. Ha) .
£
If, for some i and j , u, = gouj where g 1is twice continuously

differentiable, increasing and concave then

1) 1If x0 < x then c-:i' > Ei whenever Ei >0.

- -3 -1
2y X, > X then ¢ >c for all t>1.

Proof:

i X . Then by Proposition 2.8 c: £ c‘l < c/n for all
t>1. If, for some s , E‘l >0 and Eg _>_-c': then ui(E/n)/ui(E/n)
2 uj(E]) /0y @D by Lema 2.10 bue ulG/m)/uj @) = ujG/n)/
JG/m)ulGErm) = 1/g' (w Gy and i (&) 1y (cE) <) () ()
= l/g'(uj(E/n)). Hence g' (u‘1 (E:‘)) 5 8' (u (¢/n)) and thus E;‘ >c/n,

by the concavity of g . This contradiction establishes (1). (2) follows

Suppose x

g'(u

from a similar argument and the observation that if Xy > X then ci‘ >0

for all €21 .
It is easy to see that unless u, = anj + b for some a >0 and

u, = gouj for some twice continuously differentiable increasing function

i
g8 , where either g or g-l is strictly concave over some interval.
Therefore, provided two agents have different preferences, there is a
production function and an initial endowment that guarantees in the

maximal program with equal limiting consumptions, an agent consumes

more in every period than some other agent.

G105 S e b5 052
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APPENDIX

In this appendix we give a proof of Proposition 3.1 for the case
8 =1, When B8 < 1 , the proposition follows easily from the fact that

) Bt-lU(ct) converges for all feasible sequences.

t=]1
n

Let U= [ u/(8 c)/u'(e,c) We need the following results:
Lo S sheia
Al. Associated with any feasible sequence '((xt;ct)} is a sequence

of non-negative numbers {Gt} such that

T T
tzl (UCe,) - U] = £(x)) - £(xy) - :Zl 8, -

A2. There exists a feasible sequence {(xt;cc)} such that

T
! [UC,) - U] 2M for some constant M and T 21 .
t=1

For Al let {(xc;ct)} be a feasible sequence and let

n 1 & 4 n
U(ct) 121 uy (ct)/ui(eic) with c. 2 0, c

i
t=1. °
from the concavity of the u

= ct . It follows

1 and the mean value theorem that
1 - SR e e
uy (ct> -u, (8,c) ;ui(eic)[c:t eic] for every i and t . Hence, since

B . = - -
U(c:) = i - 121 “i“’ia) [ui (ct)- “1(61‘:)] 5 U(Ct) -U L£¢ ~¢. Put

8, = (o, =€) = (e ) = U) # {u = CBGX ) = x.)] . Then, since B8 <1

and ¢ ;f(xt) ~ Ky 6t 20 . Also, U(ct) -U = f(xt-l) - f(xt) - 5t

T T
and so )} [U(c,) - U] = £(x,) - £(x,) - | 6_  as desired.
- ’ cilN - Tk

To show A2 pick ¢ €(O,f(xo) - x.) and let ¥y * f(xo) i

0
- f(yt-l) - e for t 22 . It follows from Lemma 2.1 that

y. 2 x for some s . Let

e

(yt;e) for €t =i, iy 8 '
(xc;c:) = '(f;.f_(xs) -x) for t=g+ 1,
(x;c) for t>s+ 1

TR NS |
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T 9
/ [,U(Cc) - 0] >

Then {(xt;ct)} is a feasible sequence and
t=1

s
z [UCe) - T] = s[U(e) - U] and this yields A2.
t=1
We shall call the feasible sequence {(xt;ct)} good if there
3y
exists M such that 2 [U(ct) - U] >M for T >1 . Notice that
t=1

1 implies Z §, converges for all good sequences. Thus 1lim § =
t=1 °© g ©

0 and, since &, 2¢ - (f(x) - x.) , lim (x_;c.) = (x;¢) for all
Lo

good sequences {(xt;ct)} .

@®
Now let a = inf Z Gtzéc corresponds to a good sequencez . By
t=1

A2, a 1is finite. Furthermore, there is a feasible sequence {(;t;Et)}

@
with Z Et = a . To see this take, for each N , a good sequence

t=1
(xN;cN) with f 6N <a+ 1/N. Since (xN;cN) are bounded uniformly
't gl BT g -

for all t and N (Lemma 2.2) , there exists a subsequence {N,} such

3

that 1lim éxfj;czj) exists for each t . Call this limit {(§t;3t)} 5
j-nn

@

It is easy to see that ) Kt = o and that {(xt;Et)} is a feasible
t=1

sequence.

Let {(xc;ct)} be a feasible sequence. Then, by Al,

T T

L (e - U] = [£Gey) = £(xp)] + Y (§, - 6,1 . since

t=1 t=1 T

1lim f(xt) = £(x) whenever Z Gt < ®» , we have 1lim inf z [U(ct) -
tom t=1 To= t=1
U(e )] 50 .

. T
To complete the proof we need to show that lim inf | [U(cc) -
Toe =l

U(Et)] < 0 for any feasible sequence {(xc;c:)} different from
((Et;zt)} . But this follows immediately from the strict concavity of

U and £ .1




